概率逻辑

来自术语
跳转至: 导航搜索

    把概率论引入推理系统中处理不确定推理的一种逻辑系统。

属性

方法 引入形式化和数学的方法 创立者 B.巴斯加尔、P.费马等
发展 19世纪末20世纪初 英文名 probabilistic logic
中文名 概率逻辑 创立时间 17世纪

简介

概率逻辑

probabilistic logic

在数学上,概率理论从17世纪起,经过B.巴斯加尔、P.费马、J.伯努利与P.-S.拉普拉斯等人的工作,到19世纪已趋向完整,并在科学技术中得到广泛应用。19世纪末20世纪初又逐步出现了概率演算的一些公理系统,其中苏联的A.N.柯尔莫哥洛夫在1933年提出的公理系统影响较大。

在逻辑上,由于引入形式化和数学的方法,到20世纪初演绎逻辑已发展得较为完善。B.罗素与A.N.怀特海在1910年完成的《数学原理》一书,可以看作是数理逻辑完善到一定程度的一项成果。

在哲学史上,D.休谟曾对归纳提出非难。以F.培根、密尔为代表的古典归纳主义面临严峻的挑战。实证主义、逻辑经验主义为了应付休谟提出的“归纳问题”,并能对科学理论给出相应的解释,便将归纳命题的证明问题改为“确证”问题,并以概率值作为确证的量度,于是在20世纪20年代出现了概率逻辑,剑桥的哲学家W.E.约翰逊最早研究过概率逻辑问题,但一般公认J.M.凯恩斯提出了概率逻辑的第一个公理系统。J.尼柯德、F.韦斯曼、H.杰弗里斯、G.H.von莱特和H.赖兴巴赫等人,都为建立概率逻辑做过有意义的工作。其中最有影响的是R.卡尔纳普在50年代的工作。

概率逻辑系统在理论与实践中遇到很多困难。概率逻辑实质上是归纳逻辑的演绎化,但在方法论上也存在着问题,而且已在逻辑上提出过几种归纳悖论。从50年代以后,概率逻辑在现代数学、数理逻辑工具的影响下取得了多方面的进展,它日益与现代科学技术相结合,面临着新的突破。

正文

归纳逻辑的一种现代类型。它的特点是运用现代的逻辑与数学工具,主要是运用数理逻辑与概率理论(见概率)对归纳逻辑、归纳方法进行形式化、数量化的研究。可以说,概率逻辑是形式化、数量化的归纳逻辑。



链接

Wikipedia https://en.wikipedia.org/wiki/probabilistic_logic
Zhishi.me http://zhishi.me/baidubaike/resource/概率逻辑
http://zhishi.me/hudongbaike/resource/概率逻辑
http://zhishi.me/zhwiki/resource/概率逻辑